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Page 6, eqmtion (10): The second term on the right side should be
f

&
instead of —.

Qfh

Psge 6, equation (U): The equation should res.das follows:

T =

sad

Page 7: The second equation fol.lowingequation (15) should be
-1 imtead of T = O.

Page 8, equation (18): A bracket should be inserted between Jo(ax)

c. . The bracket should be closed at the end of the equation.
L

Psge 8, lsst line: The sentence should reed.,“A sketch of the stream-
lines in a radiel section is given in figure 5.”

NASA -Magley Ffeld, Va.
--- Issued 2-18-59
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NATURAL CONVECTION INSIDE A FLAT ROTATING COMTKINER

By Simon Ostrach and Willis H.

HR4MARY

Froude nuder is found to be the parameter

Braun

that determines the ef-
feet of body rotations on internal natursl convection flows. E@icit
forms of Froude nmiber are determined for the cases of predominant rota-
tion and predominant axisL force. In a heated cylindrical container no
significant convective effects sre generated by rotations alone. More-
over, rotation tends to inhibit the flow smd heat trsnsfer generated by
an axial body force in such a configuration. Insertion of radisl vanes

. in the
proves

A

conta&er eltinates the det&aental
the heat trsmsfer.

RV’I!RODUCTION

effects of rotation =d im-

novel application of natural convection to yield a lightweight,
efficient, smd simple heat sink is described in reference 1.- The scheme
described therein, which permits turbine blades to operate successfully
in a high-temperature gas, is that a liquid is circulated through cylin-
drical cavities in the blades by natural convection generated by centrif-
ugal force. One might then wonder whether the
employed in another clifficult problem, nsmely,
speed vehicle entering the earth’s atmosphere.
forces are available, the force of retardation
centrifugal force generated by the rotation of
sxis.

ssme idea might also be
that of cooling a high-
In such a case, two body
by the atmosphere and the
the vehicle about its

Despite the practical demonstration of the basic idea in reference
1, relatively little information on natural convection exists for inter-
nal flows and for body forces which vary temporally or spatially. The
problem of natural convection in a reentering vehicle is further compli-
cated by the sinuzltsmeousaction of the two kinds of body forces in dif-
ferent directions.

This paper, therefore, presents an anslysis of a somewhat idealized
configuration which, nevertheless, contains some of the complications

.
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associated with actual problems. In this way, the primary factors in-
fluencing’the phenomenon are determined, and the relative importance of

+

some of the interacting effects cam be evaluated. This work thus repre-
sents an initial study of the use of fluids driven by body forces for
heat sinks in rotating reentry vehicles.

DEFINITION OF THE E!ROBLEM —

A fluid contained in a high-speed vehicle which enters the earthts E
atmosphere is subject to an apparent gravitational force. A represent- a

ative deceleration curve for such a vehicle caJ.cul.atedfrom the equations
in reference 2 is presented in figure 1. Clearly, the body force is
strongly time-dependent. If a representative calculation of the heat
flux to the vehicle made from reference 2 is superposed on figure 1, it
can be seen that a lag exists between the heating of the body and the
appearance of a large retardation force. During the initiel period of
heating there is no driting force for the convective cooling process.
One wonders whether the heat transfer to the internal fluid might be in-

.

creased by rotating the vehicle nose about its sxis. Centrifugal.force
would then generate the motion as in the turbine-cooling~roblem.

.-
-..—

Rotation may be of value even after the decelerating force has be-
gun to act. The decelerating force acts in the axial direction (see fig.
2) while the internal fluid near the externsl stagnation point of the
blunt nose is heated from below; that is, the heating in the stagnation
region imposes a negative temperature gradient pars31el to the retarda-
tion force. In such a configuration the fluid remains at rest until a
cr~ical value of the Rayleigh number (PrGr) is attained (see ref. 3).
Thus, even for appreciable retardation forues, the internal fluid is in-
effective as a coolant. Therefore, a large body force (such as a cen-
trifugal force) transverse to the temperature gradient might increase the
effectiveness of the heat sink by starting the motion sooner. Also, the
rotational effects must be evaluated because rotation of the vehicle may
be used for aerodynamic stability and, therefore, be inherent to the
system.

Specific consideration is given in this report to the flow and heat
transfer of a fluid subject to an axial body force inside a rotating-
right circular cylinder of small height (see fig. 3). In this wqy, the
rotational effects can be evaluated, and internal conditions in the vi-
cinity of the external stagnation region of blunt bodies are simulated.
In order to avoid the complications introduced by unsteady effects, we
shsU assmne that the retardation force is constant &d concentrate on
the effects of rotation of the vehicle on the internsl fl~w= Therefore) .

two cases will be considered: (1) where rotation predominates, that is,
where the internal motion is essentially due to rotation of the container;

*
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and (2) where the deceleration force predominates, that is, where a flow
is generatedby the sxial body force with heating irrespective of whether
the container is rotating.

The governing equations

—

ANALYSIS

for the coolsat are those ~ressing the
conservation of mass, momentum, smd energy in cylindrical coordinates
for compressible, viscous, amd heat-conducting ~uids stiject to a body
force. With fluid properties constant, these equations are, respectively:

Continuity:

(1)

Radial momentum:

Azimuthal momentum:

av ( avvav
p-&+Pu~+=- ) laPrm+w:++‘-yin

(2)

(3)

AxisL momentum:

Energy:

&

(

a!c-va’l? aT
~cv ~

)
+Pcvu~+~~+w= ‘

az
kV% + Q - Px

where

a
—_ +
ar

+

(5)
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All symbols are @fined in appendix A.

Predominant Rotation

The case of predominant rotation simulates conditions encountered
by an internal fluid, both during the the shortly after reentry when
the deceleration force is negligible and in the stagnation region before
a flow has been established ~y the instability. -

—

The state equation

P = P(T,P)

for a fluid may be approxhated near a reference condition (0) by

P
[

=p~l-
1

B(T - To) + ~(P - po)

where 13 is the coefficient of volume expansion and ~ is the isother-
mal compressibility. It canbe shown fzmm the conservation of mass in
the closed vessel to be considered here (fig. 3) that, if the heating
(temperatureUfference) on the bottom end the cooling on the top are
identicd. fumctions of the radius, and if there are no azimuthal or axial
gradients of pressure, the pressure difference (frm the reference state)
vanishes identically. ~t is assuned here that the fluid in the container
is heated and cooled symmetrically as described and that, even though
some pressure gradients may exist, they have little effect on the density.
(If a net heating of the contained fluid is desired, a small bulging of
the container, properly distributed, will compensate the pressure incre-
ment.) Then, as for unconfined flaws,

P [ 1
=PD1-~(T-T~)

Axisynunetricflow is assumed in the cylinder of figure 3. The char-
acteristic velocity of the fluid must be proportional to QR, and it
should depend on a representative temperature difference between the
heated and unheated states. Let To be the temperature of the wheated

state and Tz the temperature at the center of the lower (heated) plate.

By the condttion of symmetric heating and cooling, the temperature at the
center of the upper plate is To - (Tl - To). If the temperate and

density of the fluid are written as

i$j.-

●

☛

.

.
T= TO+2(TZ -To)r
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P [
=pol-

1
213(TZ- T0)7

it is apparent that the perturbation parsmeter for the system is
E = 2P(TZ - To). The snalysis of appendix B, beginning with a general

power dependence of the characteristic velocity ~n e, shows that only
a linear dependence is consistent with the dynsmics of the problem.
Thus, the representative velocity is dlR.

‘ It is now convenient to transform to Umensionless variables in a
rotating system as foXLows:

u=

The basic equations

~=Rr, G=cp+$lt, ~=hz

mu, v =f2R(r+ ev), W= KIR(h/R)wI (6)

P = P&~2(Po + q)

(1) to (5) to zeroth order in e reduce to

which imply a solid-body
(e = O). To first order

%) ?PO
F =r; m=. —

(m;z

rotation of the fluid when there is no heating
in e, that is, the perturbations from solid-

(7)

body rotation due to heating, equations (1) to {5) are

&(ru)++(I’w)’o

GrQ

(

au V2
@ ‘Wz )

-y+2w +rr-2v=-
q %’

[()(

lh 2 a2u

+- E s ++*-5)+a]+**(9%( i+w*) (8)

GrQ

-(

av Uv

[()(
2fi++ g-L

& )

h
‘w%+ Y-2m +2U=* E )1+~ (9)

Re# &2 r2
.

.
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The ratio Re~/GrO is actually a Froude number and represents the

ratio d? inertia to buoyancy forces. In this particular case under con- .
sideration, the Froude nunber is large; in fact, from the definitions of
the Reynolds and Grashof nmbers based on -Q, the reciprocal of the Froude
number is just e. Therefore, the dominant inertia terms are the buoyancy ‘–
and Coriolis terms, that is, the last two terms on the left side, respec-
tively, of eqpation (8) and the last one on the left in equation (9). In
the energy eqution the convection and frictional heating terms are neg-
ligible with respect to the conduction term so that the heat transfer is
not affected by the motion and is merely due to conduction. All this im-
plies, of course, that large velocities csrmot be obtainedby applying a - , _
temperature gradient transverse to the centrifugal body force in such a
rotating configuration. To understand this seemingly unusual result, let
us solve the equations that result by omitting the negligible terms and
assming h/R
cases.

Equation
res~ctively,

,

c<l. Also, the parameter ~ is small for practical.

(7) is unchanged, and equations (8) to (1.1)become,

1 a2u——
ReQ &2 = 2

+r~- 2V (12)

2 a2v
——=2U
ReQ az2 (13]

2
= 0.z (14)
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The boundary conditions on the upper and lower surfaces (z = ~1/2)
are

U=v=w= o

At the upper surface, also,

T = o

The thermal hounda~ conditions at the surface will be discussed
a posterior.

?y following Davies (ref. 4) the velocity”and temperature distribu-
tions are written as

~ Jl(ar)fi(z)u=— w = Jo(ar)fi(z)

~ J1(ar)~(z)v=— T = -& Jl(ar)~(z)

where Jo(ar) and J1(ar) are zero- and first-order I!esselfunctions,

respectively, snd a is the first root of Jl(a) = O. Qualitatively,

the assumed radial v~iations in u, v, amd w lead to the loop flow
shown in figure 4. The viscous boundary conditions at the radisl bound-
ary (end) of the cylinder are satisfied by u and v, but for the w
component the viscous conditions are replaced by a slip condition. This
is consistent with the omission of terms of order (h/R)2 in the differ-
ential equation.

The
bined to

with the

v(l/2)

Solution

system of equations (7), (12), (23), (14), and (15) can be com-
yield an ordinary equation for V:

(ReQ)%v+4~’ =-2

boundary conditions

= v(-1/2) = o, 7’ (1/2) = v’ (-1/2) = o, v“(l/2) = v“(-1/2) = ()

of this boundary value problm then yields

( )~Jl(ar) Cl sinh~ z cos~ z - C2 cosh~.z sin% zu=-

(16)



a N4CA TN 4323 .

( )
2 Jl(ar) Cl cosh~ z sin= z + C2 sinhfi z cosfi z - “$z-v=- ●

a

(

(17)

-@% Sinm+cosh l%! A
..* JO(ar)Cl Siti~ — 2

— C!os—
2 2

)

(-Cl sirihfi z sin= z + cosh~

(
- C2 cosh~ Z COS& Z - Sinh~

2 J (ar)(-z)T=—
ar~

P=o

(18)

(19) “ _

.where

()The dimensionless temperatures of the plates r r, ++ are, from eqya-

tion (19), equal to7(l/m)Jl(m)- Any other temperature distr bution

(!could be specified at the lower surface by expanding ar’cr,- ~ in a

series in J1.

The vebcity distributions (eqs. (16) to (18)) arepresented. in fig-
ure 4. A strong Reynolds nuuibereffect Is evident. For low Reynolds
numbers tie viscous effects are present over the entire cross section of
the cylinder, but at the high Reynolds number a boundary layer appears
in all three velocity comwnent proffles~ Accompanying the bounda~ layer
is a diminution of the radial md axial components of velocity in the main
body of the fluid while the azimuthsl velocity distribution is nearly
linear, lagging the rotation of the cylinder in the upper half and leading -
in the lower half. A sketch of the streamlines is given in figure 5.

.
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. Since the equations of motion have been solved, it is possible to
explain why, physically, the velocities remain small. The driving force
r~ in equation (12) is opposed by the pressure graddent, Coriolis force
(-2v), sadvi.scous force. The pressure gradient bslances that part of
the driving force which is independent of z. At low Reynolds numbers
the remainder of tie driving force is opposed ms3nly by the viscous
force, but at large Reynolds numbers the Coriolis force grows relatively
larger and inhibits the flow. Consequentlyj the heat convection is neg-
ligible both for large and small Reynolds nmbers, and the fluid essen-
tially rotates as a rigid body.

Figure 6 is a graphical illustration of the Coriolis force in the
top of the cylinder. The Coriolis force has negative components in both
the radial and sngular directions. It opposes the azimuthsl rotation of
the fluidby the viscous force and the outward radial flow set UP by the
buoyancy force.

. It may be that flows of a cellular type wiU be obtained in this
configuration if h/R is not negligibly small and the condition of axial
symmetry is relaxed. However, it is doubtful that even then the heat
transfer would be affected by the fluid motion. Thus, rotating a fluid

8
container like that just considered does not significantly affect the
heat transfer when the deceleration force is inoperative. In fact, the
rotation may even be detrimental, for Chandrasekhar (ref. 5) has shown
that in an unstable configuration the fluid motion is delayedby the ac-
tion of Coriolis forces.

Since the Coriolis force due to the circumferential velocity compo-
nent opposes the ratisl buoyaucy force and thus negates convection effects
and also may impede the unstable motion, it appears that significant con-
vection could be obtained if the Coriolis forces were made negligible
compared to the centZMugal force. The insertion of radial vanes appro-
priately spaced would arrange the circumstances by reducing the aztiuthal
velocity component (and, hence, the corresponding CorioJds.term). The
buoyancy effects due to centrifugal force would, in this way, be unop-
posed (excepting viscous forces) snd could lead to large heat convection
as in the turbine blades investigatedby Schmidt (ref. 1).

Consider a sector between two vanes in such a divided flat cylinder
(fig. 3(b)). It is anticipated that, in contrast to the previous con-
figuration, the inertia forces wUl be of the ssme order of magnitude as
the buoyancy forces. It follows that the representative velocity must
be <~ rather than EQR. Then, upon the equations of motion (eqs.
(1) to (5)) the following transformation to a Umensionless, rotating

. system is performed:
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The new angular
state variables

The trsmsfomned

e = (&p)y + $-l-t

~=hz

u = <mu

v= ORr + @lR(dq)v

W = <&hw

variable y takes values from
sre given by

P= P&2(Po + ~P)

P = po(l - ET)

T- To = 27(TZ

equations, with the small
terms omitted for simplicity, are

No heating:

POr =r

poy = o

fh

Continuity:

Momentum:

- To)

O to 1. Again, the

w

compressibility and dissipation *

Poz=-—
($2R)2

(W)r + ‘y + (rw)z = O

– [.. +(&yG%
.

.
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If the sector is made slender by setting

E<<l, @<<l
R

the momentum md energy equations reduce to

In these equations the inertia and heat confection terms are sig-
nificant in contrast to the previous case of the complete cylinder. The
presence of the new parsmeter &p controls the Coriolis force and makes
this possible. The magnitude of the Cortolis terms is determined by the
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square root of a Froude number Aq/~, and the ratio h/(R @) controls
a portion of the viscous force. MsJsing @ very small reduces the
Coriolis force by preventing the acceleration of the fluid to appreciable
azimuthsl velocities relative to the rotating system. At the same ttie,
however, the ratio h/(R @) may become large, which indicates the flow
has become constricted and causes large viscous retardation. Probably
an optimum geometrical arrangement wodd be_ —

The previous equations resemble those for natursl convection over
a heated verticsl flat plate. However, the driving force here is the
centrifugal.force, which can be many times larger thsn the earth’s gra~-
itational force. Hence, the convective heat tramfer in such a rotating
configuration can be much larger than that due to gravitational effects,
as was demonstrated in the Schmidt turbine (ref. 1).

It can be seen from the equations that the Coriolis and viscous
forces in a rotating system will always have their adverse effect. All
this means, however, is that convective heat transfer produced by cen-
trifugal forces in a rotating sector can neyer be as large as that over
a flat plate in a gravitational field of corresporidingmagnitude.

Predominant Deceleration Force

The effects of rotation on a flow generated by the deceleration
force must still be evaluated because the reentry vehicle may be rotating
about its axis for aerodynamic stability reasons. The deceleration force
will establish flows in a flat cylindrical configuration (fig. 3) after
the critical Rayleigh number is surpassed. Also, if the retardation force
is transverse to a temperature gradient, as it would be, for exsmple, in
a curved container like a spherical shell, it would hmediately generate
a conventional natursl convection flow. Let us, therefore, snalyze the
case where the flow iS essential-lydue to the ~tardation force”

.

.-
-

.— ——

E
CD

.

.

—
—

—

—

For the inertia and
tude, the characteristic
following trmsformation
rotating coordinates:

buoysmcy forces to be of equal order of magni-
velocity must be ~. Accordingly) *e the
from the inertial coordinates to dimensionless

V.@v+QRr W= #@w

.—-
r = Rr e =ql+Clt z = rlz

pofh(~ -1-q) = po(l - ET) T = (T - TO)/2(TZ - TO)P= P .
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In general, u, v, and w are functions of the singularvelocity as
well as tinecoordinates. Note that, if Q is zero, the flow is due en-
tirely to the action of the axisl body force amd the heating. On the
other hand, for no heating the flow is again a solid-body rotation. This
is clesr from the equations since, for
(4) become, respectively,

E = 0, equations (2), (3), and

When c + O,
are omitted,

and agati when small compressibility and dissipation terms
the equations of motion become, to lowest order in e,

1

[(+1 R a2v+ h2a2v+l&+la2v+

()
&au v—— —

]
*h az2 H ~ ~~ r2*2 ~23-~

—— (22)

(23)

(24)

.

.
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The parsmeter a is proportional
being considered here u assumes
numeratir depends on the rotation
(predominant)retardation force.

to the Froude number. In the case
small values by definition because the
and the denominator depends on the
(In the previous case, the inertia and II

buoyancy effects both depended only on the rotation with the consequence ~
that the Froude number was independent of x@ation.) Therefore, with
u 51, the inertia terms in equations (21) snd (22) having u as “aco-
efficient are, at most, of the sane order as the other like terms. The
equations look like the conventional bounda~-layer equations, and the
inertia and convection effects are hportsnt. The heat transfer will be
greater than that due to conduction alone.

An examination of the foregoing equations shows that a steady cellu-
lar flow, as occurs with heating a horizontal surface from bel.ow(ref. 3), “
is affectedly a small rotation to a different order of magnitude than an
sxisymmetric flow. Consider first the cellular flow. With 0 = 0, the
three velocity components of each cell are of the same order of magnitude.

*

The first momentum equation (eq. (21)) shows that the rotation will affect
this flow to first order in u. The preceding analysis of the flat cyl-
inder with rotation only and the smlysis of the unstable static config-
uration (ref. 3) suggest that the effect will be adverse. Thus, it is
expected that, in cellular flow generated by sm axisl body force, rota-
tion will reduce the heat transfer.

Second, consider a steady axisymmetric flow with zero azimuthal ve-
locity component. When a small rotation is imposed, the azimuthal veloc-
ity is properly represented by

v= ml

Since the property of axisymnetry is retained (~/&ps O), it is evident
that the equations are affected (through the Coriolis and centrifugal

force terms) only to order a2. Consequently, the rotation will have
negligible efl?ectupon this type of natural convection flow. —

CONCLUSIONS

The smalysis presented herein indicates that the Froude number is
the parsmeter that determines the relatlve effect~of body rotation on ●

internal nattial convection flows. In flows with large Froude number -
(e.g., motions induced solely by rotation of a heated cylinder), the .
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action of the Coriolis force prevents appreciable convection of heat.
Although the Coriol.isforce inhibits convective heat trsmsfer somewhat
even for Froude numbers of unit order of magnitude (rotating sector),
considerable convection is obtained because the driving force cam be
greatly increased. Flows that have been set up by a strong external
body force have a small Froude nwber and are not greatly affected by
rotation of the container, especiaUy if they have sxial synmetry.

A practical conclusion to be drawn from these results concerns the
use of large centrifugal forces to drive natural convection cooling.
Such a scheme will be successful only if the Coriolis force is reduced
by Umiting the azimuthal extent of the cooling passage. This, in turn,
increases the viscous forces. Nevertheless, such cooling arrangements
can greatly affect heat-transfer rates, yielding rates many times higher
than those using the gravitational field, as shown by Schmidt’s tests on
turbine blades.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohioj June 17, 1958

.
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See each
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APPENDIX A

SYMEOLS

section for specific definitions of the

acceleration of vehicle

specific heat at constant pressure

specific.heat at constant volume

nondimensional...

negative of z-component of body force per unit mass

Grashof number, 213&T2- TO)fh3/V2

Grashof number due to rotation, 2~%h4(T2 - To)/v2

heat trsmsferred per unit area per unit time

height

frictional heating parsmeter, j3(OR)2/cp

thermal conductivity coefficient

pressure

Prandtl number, cp~/k

nondimensional pressure

radius

Reynolds number due to rotation, Qh2/v

nondtiensionsl radial coordinate

radial coordinate

temperature

time

U,v,w velocity components in radial, azimuthal, and axial directions,
respectively

.

.

—

h

.
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U,v,w

Y

z

r

T

‘?

u.) j

4323

dimensionless velocity profiles

nondimensional velocity components

dimensionless angular coordinate in

nondimensional sxial coordinate

axial coordinate

17

sector

fluid volumetric expansion coefficient, p
[%]
alp)

P
ratio of specific heats

constsmt, 2~(Tz - To)

angular coordinate in inertial coordinate system

absolute viscosity coefficient

kinematic viscosity coefficient

density

dimensionless temperature difference

dissipation function

sngul.arcoordinate in rotating coordinate system

singularvelocity

nR/JaE

Subscripts:

z center of lower

max ?naXlm.SIul

o unheated state

surface
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APPENDIX B

ORDER OF MAGNITUDE OF YELOCITY

Instead of the relations
velocity components on e be

u = ~e% v

. ~=Rr E=

(6), let a more
employed:

= QR(r + e%)

cmFmlmTs

general dependence of the

w= $2R#w
)

hz P= P&%2(Po + Czp)

\

(Bl)

P = po(l - ET) T= (T- TO)/2(Tl - ‘O) m,n,Z > 0 I

Equations (Ill)are appropriate for a flow which increases with external
heating =d reduces to solid-body rotation when there is no heating.
Substituting into the governing equations (1) to (5), letting h/R~ 0,
and neglecting compressibility and dissipation terms yield

e~(u~ + ~) - e2n g + er~ - #2v = -Gzpr + d%e~l~z

P+n(uv’r +Wvz + uv/r) + em2u = #R&z

1

(B2)

Pz=o

In the first of equations (B2), no term canbe of greater order of mag-
nitude than the driving force er~. Hence, m = n = 2 = 1. Then equations
(Bl) become identicsl to (6) and equations (B2) become

C(U% + WUz) + r’r- 2V = -pr + R~l~z

e(uvr + wvz + uv/r) + 2U = Re~%zz I (B3)

If smy value other than 1 is chosen for the indices m and n, the
Coriolis term in either one or the other of equations (B3) will dominate,
and a null solution will result. me energy equation becomes

a-

.

(c/T](UTr + WTZ) = (I%Re&zz (B4)
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From the definitions

Oh2
ReQ . ~,

a?14
GrQ = ~

it follows that

This accounts for tie form of equations (8) ta (U).
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